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A method for numerically expanding an arbitrary function on the sphere in a series of 
spherical harmonics which makes use of the speed of a fast Fourier transform is described. 
Discussions of the operation count, storage requirements, accuracy, and an algebraic and a 
numerical example are included. A comparison with straightforward integration is made 
throughout. Also, a new method for evaluating the spherical harmonics is discussed. 0 1985 

Academic Press, Inc. 

1. INTR~OUCTI~N 

It need hardly be said that the functions variously known as “spherical har- 
monics,” “ surface zonal harmonics,” etc., described by the equation 

Y,JO, 4) G C,mP;“(cos 0) eim4, (1) 

where P;“(x) is the associated Legendre polynomial of degree I and order m and C!,,, 
is a normalization constant given by 

C,+p3, (2) 

are of great utility [l] in many calculations in theoretical physics. These functions 
form an orthonormal set of basis functions on the unit sphere. That is, if 

with 

f(R -n) =f(R n) ve E [O, 7c] 

f(O? 41) =m 42) !@I, 42E c -75 xl 

.f(T 41) =f(x, 42) b4,hE C-F nl 
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and f is square integrable on [0, z] x [ -z, n], then 

where F,,,, is a complex constant given by 

with * denoting complex conjugation, and 

(3) 

(4) 

Expansions such as (3) will be referred to as spherical harmonic expansions, and F,,,, 
will be called a spherical harmonic expansion coefficient. The aim of this paper is to 
present a method for numerically computing (4) for a given function of solid angle 
f(O, 4) which utilizes the speed of a two-dimensional fast Fourier transform (FFT). 

To the author’s knowledge, the only ways of computing (4) seem to be 
straightforward computation by two-dimensional integration and a method 
developed by W. Freeden [2, 12-141 which is analogous to Gaussian quadrature in 
one dimension. Freeden’s method requires the solution of a linear system of 
equations for each degree I and each set of N2 mesh points of dimension 
N2 + 21+ 1. It will be shown that the method of this paper takes fewer operations 
than either straightforward integration or Freeden’s method, making use of a two- 
dimensional FFT only once for all orders 1 and m, the remaining operations being 
only the evaluation of a double sum of roughly (21+ 1) N terms, where N2 
corresponds to the number of mesh points in the integration method and in 
Freeden’s procedure. 

2. DERIVATION OF THE ALGORITHM 

To begin the evaluation of (4) assume that the function f is represented by a 
finite Fourier series (for an arbitraryfa FFT approximatesf by such a series), 

N N 
f(0, &)= 1 1 fabe’(uO+b*). (6) 

Suppose we could also represent the Y,m by a finite Fourier series (this is the whole 
trick to the procedure) as follows, 

(7) 
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Then by (4) 

Express sin 8 as ( 1/2i)(eis - e-j”) and perform the integrations over 0 and 4 to get 

F,= i 1 B;-fab 
j= -I a,b 

K(~,,j-1-6,,j+1)-(1-6,j-l) 

i[(-1)-j+‘- 11 

a-j+1 

+(1-6 
a,, + 1 

)cwY-‘-‘-ll 1 a-j-l * 

Summing over b and rearranging the sum over a we obtain 

It is understood that when j= +N, + (N- 1) the sums over a for which the lower 
limit exceeds the upper limit are omitted. 

The algorithm then, is 

Step 1 
Obtain an approximation for f of the form (6) via a 
two-dimensional FFT. 

Step 2 
Evaluate the sums in (8). 

(9) 

The computation of the constants Bj”’ in (7), described in detail below, is not part 
of the algorithm, since they are independent of f(0, #), needing to be calculated 
only once for all time. 

3. OPERATION COUNT 

It is now shown that in almost all cases of interest the present method has a 
smaller operation count than that of straightforward quadrature. Let nr be the num- 
ber of operations required to evaluate f; n,,,, the number of operations to evaluate 
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Y,M sin 0 by (7), which is shown in Section 7 to be approximately 201; niN the num- 
ber of operations required to perform a one-dimensional integration over an inter- 
val with N mesh points. For Newton-Cotes integration n, ~2. It is assumed that N* 
mesh points in two dimensions will be used in both the FFT and the integration 
procedure. Then the total number of operations to evaluate (4) by quadratures is 

N*(n,+ nr,) + niN* + njN~nfN2 + 201N* + niN*. 

The number of operations in the evaluation of (8) is approximately 401N. The num- 
ber of operations for a two-dimensional FFT is nFFTN2 log N, where nFFT is a con- 
stant 525 [3]. The total number of operations by the FFT method is 

nf N* + nFFT N* log N + 4OlN. 

The FFT method takes fewer operations than quadrature when 

n FFT N* log N + 401N < 2OlN* + n i N2 

or when 

12 
nFFTNIOgN-niN 

20N-40 ’ 

Taking nFrTx25, n,x2, we have 

For N = 10, 100, 1000, I, has the values 4, 7, 9, respectively, when rounded up to 
the nearest integer. The conclusion is that the algorithm (9), since (6) and (7) 
together imply one would be interested in all 1 <N, takes fewer operations than 
straightforward quadrature for most values of 1 of interest. Note though that for 
both the minimum number of operations is nfN2. 

In contrast, the solution of a linear system of order n takes on the order of n3 
operations [6, Chap. 41. Thus Freeden’s scheme apparently requires much more 
computational effort. However, this extra work pays a dividend of being able to 
handle much more general mesh arrangements than the simple rectangular grid 
used in this paper. The method of this paper would be useful as a high-speed for- 
mula for obtaining the spherical harmonic expansion coefficients of a user-specified, 
easily computable function f, with not too much angular variation. Freeden’s 
method, on the other hand, would be much more applicable to problems of 
empirical data interpolation, on the surface of the Earth, for example. Freeden’s 
method also allows the possibility of computing error estimates. 

Remaining questions concerning the justification of (7), the computation of the 
Bjm, the storage of them, and error estimates are addressed below. 
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4. DETERMINING THE B!" I 

We shall need the following standard results concerning 
functions [4, lo]: 

associated Legendre 

P;(x) = 1, P?(x) = x, Pf(x) = - Jr2 

m (Z-m)! 
f7"(x)=(-l) (l+m)!P;(4 

et 1 =xP;l(x)-(I+m)J1-X2.P;“-yX) (12) 

pl(cos e) = ( - 1)’ WV sin 6~ ’ I I! -* ( ) 2 (13) 

Formulas (lOk( 13) show, by induction, that 

Pyycos e)= i k almeikO , 
k= -I 

(14) 

where uk” is a complex constant. Alternatively, one can use Rodrigues’ formula: 

P;“(x) = (- 1)” (1 - X*)m’2 g P,(x). 

It is useful to think of (12) as a connection between three points of a grid 
denoting the possible values of I and m as shown in Fig. 1. If (14) is substituted into 
(12) with x = cos 0, a recursion relation is obtained for the a;” after equating sums 
of coefficients of like powers of eie to zero. It can be seen from Fig. 2 that all 
possible values for I and m are covered if in addition (lo), (11) and (13) with 
x = cos 8 are utilized. The algebrajs tedious but straightforward, so only the final 
recursion relations for the uk” are presented: 
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3 . 
2 
I 

m=O . : & 
-I l . . 

-2 . . 
-3 . 

1=0 I 2 3 

FIG. 1. Equation (12) connects points of I-m space as shown by the solid lines. 

The initialization, using (lo), is 

a?=1 - 1 3 a1 10 = 
2’ 

up=0 9 alO - 1 = - 
2 

all =f. 
1 2’ 

#=O 3 (-pl = 2. - 
2 

The coefficients af can be determined from (13) and the binomial theorem: 

and al’=0 otherwise. k 

(16) 

(17) 

It is shown in Section 6 how the u2 can be computed using mostly integer 
arithmetic. These recursion relations can be solved numerically by machine. Once 
that is done, from (l), (7) and (14) we have 

B’” = C,,,,u;? k (18) 

4 

3 

2 

m=O 0 
-I 

-2 

-3 

-4 

FIG. 2. Application of the recursive procedure (15). Circled dots indicate points at which (13) is 
used. For m < -1, uirn is found from ai-” by (11). 
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TABLE I 

The Yr,,, for 1= 0, 1, 2, 3 are exhibited in [S]. From this list one can determine the 
BP by hand for I= 0, 1,2, 3. Table I shows the results of computing the BP for 
these degrees 1 by the scheme of (15b( 18) in FORTRAN double-precision 
arithmetic on a PDP 11/70 with a UNIX operating system. The underlined digits 
indicate agreement with hand calculations made on a lo-digit/visible, lCdigit/ 
internal calculator. This agreement is uniformly 8 digits or better, which attests to 
the accuracy of the procedure. Note that (11) implies one need only calculate ai’ 
for values of m > 0, and that ai-‘, which is needed in (15) when m = 0, can be 
found from LZ~‘. This is also indicated in Fig. 2. 

5. STORAGE OF THE Bkm 

At first glance it might seem that the great numbers of Bf”s needed to be stored 
in memory for the execution of the algorithm (9) would be a handicap. Since m has 
a range of --I,..., 1 for each I, and k has a range of -I,..., 1 for each 1 and m, the total 

501/51/3-9 
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number of real storage spaces (remember B, Irn is complex) seemingly required is 

2. i (2[fl)‘=;(L+ 1)[4(L+ I)‘- I], (19) 
I=0 

where L is the maximum value of 1 being considered. Some values for various L are 
listed in Table II. As one can see the demands on memory become quite severe for 
even modest 1. However, examination of Table I reveals some remarkable sym- 
metries and regularities of the BP, which below will be proven to be true in general, 
which decrease these demands by a factor of 16. They are: 

(Sl) Bk-” = (- 1)” (Blmk)*. 

(S2) B’l”k = (Bkm)*. 

(S3) If m is odd Bf’ is pure imaginary, while if m is even Bim is real. 

That is, Bf’J 2i # 0, and Bf c2i+ 1) = 0, for i = 0 ,..., [(1- 1)/2], where [x] denotes the 
greatest integer less than or equal to x. 

(S5) B$ = 0 if I even, m odd. 

Before proving these note the effect on the number of Bim’s needed to be stored. Sl 
and S2 imply one only need consider m, k B 0. S3 implies one only needs real 
storage locations. S4 implies that one only need consider half the positive values of 
k. Thus one expects a reduction by a factor of 16 in the number of real storage 
locations needed. With careful consideration of Fig. 3 and using the formula for the 
sum of the squares of consecutive integers it can be shown that the total number of 
real storage spaces that one needs, if L is the maximum degree 1 being considered, is 

(L+ 1u2 
c (4j- I) j=(W3+2tL2+32L+ 15)/24 (20) 

j- 1 

if L is odd and 

L/2 
Jl (4j- 1) j+ i+ 1 ( > 

(L+ 1)=4L3+21L;qf38L+24 

TABLE II 

L 2/3(L+ 1)(4(L+ 1)2- 1) 

3 168 
9 2660 

17 15540 
33 104788 

(21) 
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P=O 

I 

2 

3 

4 

” r=O I 2 3 4 

. 

: : 

; ; : . . . 

x x x x 

: ; : ; 
. . . . 

. . . 
x ; x 

: . . . 
: 

x x x x ; 
. . . . . 

FIG. 3. Diagram of memory locations for storage of B$. Dots represent locations where Bkrn is non- 
zero and crosses represent locations where Bk” is zero. For each j there are 4j- 1 dots, where j labels suc- 
cessive pairs of values of 1. For each I there are (I + 1) j dots. 

if L is even, which indeed shows a factor of 16 improvement over (19). Some values 
of the right-hand side of (20) are listed in Table III. These are much more 
manageable numbers. 

The operational memory requirements may be even further diminished by noting 
that the calculation of the sum (8) requires, for a fixed I and m, only Bk”‘, 
k = A,..., I. Thus, for example, if one wanted to compute FI, for several degrees I, 
one need only bring into memory the Bj,!” for the particular 1 being considered at the 
time, which requires on the order of (1+ 1) l/2 storage locations by Fig. 3. 

Property Sl is derived by observing that (l), (2) and (11) imply that 

whence 

Y,-,=(-ly- Y& 

k= 0 

/I 
k= 0 

j=l 

k=O 

: 
j =2 

k* p 

2 
3 I 

k=O 

: 

: 
1 i i=3 

from which Sl follows by linear independence of the eve. 

TABLE III 

L (4L3+21L2+32L+15)/24 

3 17 
9 205 

17 1095 
33 6987 
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Property S2 follows from the observation that P;“(cos 0) is real. For then, by 
(14h 

k= --I 

from which S2 follows, using (18). 

k= --I 

Properties S3 and S4 follow from (15), (16) and induction on 1. Only k 80 and 
m > -1 need be considered since S3 and S4 are preserved under the symmetries of 
Sl and S2. S3 is evident from (15), but S4 deserves comment. First note that S4 is 
true for 1= 0,Z = 1. Assume that it is true for Z, and m = O,..., 1. Then (15) shows that 
~7:+‘,~=0, and if k=1+1-(2i+l)=I-2i then ak+l,m=O, for any m. Thus S4 is 
true for Z+ 1. 

SS follows immediately after setting k = 0 in (15) and using S2 and S3. 

6. ERRORS 

Observe that if both sides of (15) are multiplied by 2’+’ a recursion relation for 
the quantities ?iim = ’ Im 2 uk is obtained which is the same as (15) except the factor of f 
on the right side is missing. Next, observe that (13) can be rewritten as (21- l)!! 
(-sin e)‘, which means iit is an integral complex number. Thus the recursion 
procedure for the iiim . is performed entirely in integer arithmetic, because the initial 
values a?, 2~2;~ are integ ers by (16). Hence, the only error in uL~ is the round-off 
error incurred by the integer division in @/2’. The only remaining step in 
calculating the Bfm after finding the up is (18). The error in C,, can be assumed to 
be very small, therefore the BP can be assumed to be determined with very high 
accuracy. In the evaluation of (4) then, the only significant errors come from the 
truncation of the Fourier series off in (6) to (2N + 1 )* terms, any error that might 
occur in the FFT procedure in determining the fab, and round-off errors occurring 
in the evaluation of (8). The relative error due to the truncation of the Fourier 
series of S is 0( l/N*’ + * ), ifSis r times continuously differentiable, by a two-dimen- 
sional extension of the argument in [6]. Gentleman [7] states that the relative rms 
error for an FFT is bounded by 1.06 x xi (2ni)3’2 x eps, where 2N+ 1 = ni ni, each 
ni is prime, and “eps” is the machine precision. It is conjectured that the evaluation 
of the sum (8) is numerically stable since the fam decrease as l/(um)“’ as in [6], 
and the coefficients off,, decrease as l/a’. Thus, it appears that the major source of 
error in the algorithm (9) is the FFT itself. 

7. EVALUATION OF Y,,(O,(6) 

To obtain f(0,b) from the F,,,, one uses (3), which requires the evaluation of 
Y,,(8, 4). Equation (7) provides a means to do this. If the Goertzel-Reinsch 
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algorithm [8] is used to evaluate (7) the operation count is about 201, and 
numerical stability is guaranteed. 

The definition (1) can be used as well to evaluate Y,*(e, 4), however, it requires 
knowledge of P;“(cos 13), which can be obtained by means of a recursion relation 
such as 

(I-m+l)P;;,(x)=(2l+l)xP;“(x)-(z+m)P~~”_,(x) (22) 

with perhaps (13) as an initialization. The operation count for this method is 
roughly 101-8m, about twice as fast as (7). Reference [ 111 shows that this recursion 
scheme is stable and also describes codes based on it which calculate the associated 
Legendre functions in extended-precision arithmetic. 

Since P;“(x) is proportional to P;“(x), the equation 

dP,“(x) 
dx P;“(x) - P;“(x) 7 

WYx) = o 
(23) 

holds. Using the expression [4] 

and various recurrence relations for the Py, one can consider (23) a check on the 
accuracy of (7) or (22). A similar idea was used in [ 111. 

Codes based on (7) and (22) were written, and programs to compare the two 
methods and to check (23) were run for all values of the degree 1~ 15. The 
agreement of (23) with zero was uniformly better than 16 decimal places for each 
method, as was the agreement of the two methods with each other. The com- 
putations were performed on a DEC VAX-11/780 in FORTRAN DOUBLE- 
PRECISION arithmetic. 

8. EXAMPLES 

This paper will close with a few examples. 
First, a hand example is considered. Let f(0,d) = Y,,(B, 4). By (4) and (5), (8) 

should give 

FrJcJ = F,, - 1 = F,,, = F,,m = 0 for 122, Irnl <I 

F,, = 1. 

That this is so shall be shown presently. Let N= cc in (8). 
Observe that since 
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we have 

f -,,, =;&, all other fab=O. (24) 

We immediately see I;;, = 0 for all m # 1 in (8). The first sum over a contributes 
nothing if j < 1 and the second sum if j > - 1. Thus (8) becomes, for 12 2, 

F,,, = --71 f: 2B;‘* 
[ u=--co (a-j)*-1 L1 

jf2 [( - 1)-j+ l] 

j=l 

+i?lB~‘*f_,,,+i~B’i’*fi,,-4B~,*f_,,, 

-4Bi’*f,,, - i~B’~!~*f-,,, + -inBhl*fi,, 

+$2Bj,‘* f 
j= -/ O=jf2 

(25) 

If 1 = 2 this gives, using Sl, S4, and (24), 

F,, = -n[$B;‘f-,,, 

+ inBi’*(f- I,~ -fi,l) + in(B, *,I* +B?‘)(f-,,, +fi,J-4(BZ:1*-BZ’,*)f,,, 

+ W!~fd 

which is zero by Sl-S5. If 12 3 (25) becomes 

F,, = --n 2 i $‘*(a- fpl,l +a+ fi,l) 
i j=3 

+~B:‘*fk, +inB::*(fL,, -fi,d+;B”,*f,,, 

+2 ? B,“*(a-fp,,,+a+f,,,) , 
j= -/ 1 

where CC, = [(-1)‘~‘+1]/[(~1-j)‘-1].1fZisoddB~*=0byS4.1f1iseven 
Bz * = 0 by S5. Since f ~ ,,1 = -f,,l the middle terms are proportional to 

B:‘*f-,,l+B”,*f,.,=(-B;‘*+B”,*)fi,, 

=(B”,+B”,*)f,,,, 

which is zero, by S3. 
The remaining terms give, also using (24), 

F,,=271 i B;‘[--ol-+cr+ --a+ +~-lfi,,t 
j=3 
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TABLE IV 

451 

which is zero, as required. For I = 1 we have, instead of (25) 

F,, = -7c[-B;‘*f-,,, + inB;‘*f-,,, -4B”,*f-,,, -4B;‘*f,,, 

- wy*f,,, +w!~*.fi,J 
= -n[+l;l* +4B”,* -4q* +$B”,*] fi, 

= -n[$-4-4-3 B;‘*f,, 

=7cy* Ifi,+ 1, since B:’ =frr . 

The sum (8) is validated for this example. 
Now some numerical examples are in order. Table IV shows the result of 

calculating (4) by integration over the sphere using a two-dimensional extension of 
Simpson’s rule, for the case f = Y,,(B, 4). The machine used in this and the follow- 
ing computations is the same that produced Table I. The domain of 13, [0, K] was 
divided into 10 equal intervals and the domain of 4, [ -71, rr], into 20. This 
corresponds to N between 10 and 14. Values for F,,, Fjl are correct only to 3 
decimal places, all other coefficients to 16. Table V shows the result of calculating 
(4) by algorithm (9) for the same function J F,, has 7-decimal place accuracy; all 

TABLE V 
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other values are exact. It is remarkable, in light of the many cancellations occurring 
in (8), that the zero values are exactly zero and not just within the machine “eps” of 
zero, as is the case in Table IV. These two tables represent the maximum attainable 
accuracy for each method, since for Table V the values fi, were not obtained by a 
FFT, but were obtained from a program which calculates the Bim. The proposed 
method is evidently superior in accuracy, although the accuracy of the integration 
procedure could be improved by using a method of higher order than Simpson’s 
rule. As for the computational time for the two methods, Table IV took 69.7 
seconds to make, while Table V took only about 0.7 seconds to make. If one 
includes the time it takes to produce the fii by a FFT, which is about 4.7 seconds, 
the time required to produce Table V by algorithm (9) is less than 6 seconds, as 
opposed to 70 seconds for integration. The FFT used was written by 
R. C. Singleton, and is described in [9]. 

9. CONCLUSION 

It appears that algorithm (9) has two major advantages over integration: speed 
and accuracy. The major drawback is that it cannot be applied to problems with 
irregular spacing of the data f over the sphere, for then a FFT cannot be applied in 
the determination of the fi,. Another method for finding them must be used, such as 
Goertzel-Reinsch. In this case it is conceivable that Freeden’s method may be more 
desirable, since he also provides a way of minimizing the error for 21+ 1 < N. 
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